Física y medición
Como todas las otras ciencias, la física se sustenta en observaciones experimentales y mediciones cuantitativas. Los objetivos principales de la física son identificar un número limitado de leyes fundamentales que rigen los fenómenos naturales y usarlas para desarrollar teorías capaces de anticipar los resultados experimentales. Las leyes fundamentales que se usan para elaborar teorías se expresan en el lenguaje de las matemáticas, la herramienta que proporciona un puente entre teoría y experimento. Cuando hay discrepancia entre el pronóstico de una teoría y un resultado experimental, es necesario formular teorías nuevas o modificadas para resolver la discrepancia. Muchas veces una teoría es satisfactoria sólo bajo condiciones limitadas; a veces una teoría general es satisfactoria sin ciertas limitaciones. Por ejemplo, las leyes del movimiento descubiertas por Isaac Newton (1642-1727) describen con precisión el movimiento de los objetos que se mueven con rapideces normales pero no se aplica a objetos que se mueven con rapideces comparables con la velocidad de la luz. En contraste, la teoría especial de la relatividad, desarrollada más tarde por Albert Einstein (1879-1955), da los mismos resultados que las leyes de Newton a bajas rapideces pero también hace una descripción correcta del movimiento de los objetos con rapideces que se aproximan a la rapidez de la luz. Por lo tanto, la teoría especial de la relatividad de Einstein es una teoría de movimiento más general que la formada por las leyes de Newton.
La física moderna nació primordialmente porque la física clásica no era capaz de explicar muchos fenómenos físicos. En esta era moderna hubo dos hitos, las teorías de la relatividad y de la mecánica cuántica. La teoría especial de la relatividad de Einstein no sólo describe en forma correcta el movimiento de los objetos que se mueven con rapideces comparables con la rapidez de la luz; también modifica por completo los conceptos tradicionales de espacio, tiempo y energía. Además, la teoría muestra que la rapidez de la luz es el límite superior de la rapidez de un objeto y que la masa y la energía están relacionadas. La mecánica cuántica la formularon algunos científicos distinguidos para proporcionar descripciones de los fenómenos físicos a nivel atómico. Con los principios de la mecánica cuántica se han construido muchos dispositivos prácticos.
Los científicos hacen un trabajo constante por el mejoramiento en la comprensión de las leyes fundamentales. En tiempos recientes numerosos avances tecnológicos han resultado de los esfuerzos de muchos científicos, ingenieros y técnicos, tales como exploraciones planetarias no tripuladas y alunizajes tripulados, los microcircuitos y las computadoras de alta velocidad, las complejas técnicas de visualización que se usan en la investigación científica y la medicina, y muchos resultados notables en ingeniería genética. Los impactos de dichos desarrollos y descubrimientos en la sociedad han sido colosales, y es muy probable que los futuros descubrimientos y desarrollos serán excitantes, desafiantes y de gran beneficio para la humanidad.
Estándares de longitud, masa y tiempo
Para describir los fenómenos naturales, es necesario hacer mediciones de varios aspectos de la naturaleza. Cada medición se asocia con una cantidad física, tal como la longitud de un objeto. Si tuviese que reportar los resultados de una medición a alguien que desea reproducir esa medición, tendría que definir un estándar. Sería absurdo que un visitante de otro planeta le hablara de una longitud de 8 "glitches", si no conoce el significado de la unidad glitch. Por otra parte, si alguien familiarizado con el sistema de medición reporta que una pared tiene 2 metros de alto y la unidad de longitud se define como 1 metro, se sabe que la altura de la pared es el doble de la unidad de longitud básica. Cualquier unidad que se elija como estándar debe ser accesible y poseer alguna propiedad que se pueda medir confiablemente. Los estándares de medición que diferentes personas de lugares distintos aplican en el Universo, deben producir el mismo resultado. Además, los estándares que se usan para mediciones no deben cambiar con el tiempo. En 1960 un comité internacional estableció un conjunto de estándares para las cantidades fundamentales de la ciencia. Se llama SI (Sistema Internacional) y sus unidades fundamentales de longitud, masa y tiempo son metro, kilogramo y segundo, respectivamente. Otros estándares para las unidades fundamentales SI establecidas por el comité son las de temperatura (el kelvin), corriente eléctrica (el ampere), la intensidad luminosa (la candela) y la cantidad de sustancia (el mol). Las leyes de la física se expresan como relaciones matemáticas entre cantidades físicas que se presentarán y discutirán en todas las partes del libro. En mecánica, las tres cantidades fundamentales son longitud, masa y tiempo. Todas las cantidades en mecánica se expresan en términos de estas tres.
Longitud
La distancia entre dos puntos en el espacio se identifica como longitud. En 1120 el rey de Inglaterra decretó que el estándar de longitud en su país se llamaría yarda y sería precisamente igual a la distancia desde la punta de su nariz hasta el final de su brazo extendido. De igual modo, el estándar original para el pie adoptado por los franceses era la longitud del pie real del rey Luis XIV. Ninguno de dichos estándares es constante en el tiempo; cuando un nuevo rey subía al trono, ¡cambiaban las longitudes! El estándar francés prevaleció hasta 1799, cuando el estándar legal de longitud en Francia se volvió el metro (m), definido como una diezmillonésima de la distancia del ecuador al Polo Norte a lo largo de una línea longitudinal particular que pasa por París. Observe que este valor es un estándar razonado en la Tierra, que no satisface el requerimiento de que se puede usar a través del Universo. Tan recientemente como 1960, la longitud del metro se definió como la distancia entre dos líneas en una específica barra de platino-iridio que se almacena bajo condiciones controladas en Francia. Sin embargo, los requerimientos actuales de la ciencia y la tecnología necesitan más precisión que la dada por la separación entre las líneas en la barra.
En las décadas de los sesenta y setenta del milenio pasado, el metro se definió como 1650 763.73 longitudes de onda 1 de la luz naranja-rojo emitida de una lámpara de criptón 86. No obstante, en octubre de 1983, el metro se redefinió como la distancia recorrida por la luz en el vacío durante un tiempo de 1/299 792 458 segundos. En efecto, esta última definición establece que la rapidez de la luz en el vacío es precisamente 299 792 458 metros por segundo. Esta definición del metro es válida a través del Universo respecto a la suposición de que la luz es la misma en todas partes.

Masa
La unidad fundamental del SI de masa, el kilogramo (kg), es definido como la masa de un cilindro de aleación platino-iridio específico que se conserva en la Oficina Internacional de Pesos y Medidas en Sévres, Francia. Esta masa estándar fue establecida en 1887 y no ha cambiado desde esa época porque el platino-iridio es una aleación inusualmente estable. Un duplicado del cilindro de Sévres se conserva en el Instituto Nacional de Estándares y Tecnología (NIST, por sus siglas en inglés), en Gaithersburg, Maryland (figura 1.1a ). La tabla 1.2 menciona valores aproximados de las masas de varios objetos.

Tiempo
Antes de 1960 el estándar de tiempo fue definido en términos del día solar medio hacia el año 1900. (Un día solar es el intervalo de tiempo entre apariciones sucesivas del Sol en el punto más alto que alcanza en el cielo cada día.) La unidad fundamental de un segundo (s) fue definida como (1/60)(1/60)(1/24) de un día solar medio. Ahora se sabe que la rotación de la Tierra varía ligeramente con el tiempo. Debido a eso, este movimiento no proporciona un tiempo estándar que sea constante. En 1967 el segundo fue redefinido para sacar ventaja de la enorme precisión que se logra con un dispositivo conocido como reloj atómico, que mide vibraciones de átomos de cesio. Ahora un segundo se define como 9 192 631 770 veces el periodo de vibración de la radiación del átomo de cesio 133. En la tabla se presentan valores aproximados de intervalos de tiempo.

Rapidez y Velocidad.
Recordemos sobre las magnitudes que hemos revisado
¿Qué tipo de magnitudes son? Masa, Tiempo, Temperatura, Longitud.
¿Qué tipo de magnitudes son? Velocidad, Fuerza, Aceleración, campo magnético.
Posición, velocidad y rapidez
El movimiento de una partícula se conoce por completo si la posición de la partícula en el espacio se conoce en todo momento. La posición de una partícula es la ubicación de la partícula respecto a un punto de referencia elegido que se considera el origen de un sistema coordenado.
El desplazamiento de una partícula se define como su cambio en posición en algún intervalo de tiempo. Conforme la partícula se mueve desde una posición inicial xi a una posición final xf, su desplazamiento se conoce por:

Se usa la letra griega mayúscula delta para denotar el cambio en una cantidad.
A partir de esta definición se ve que x es positiva si xf es mayor que xi y negativo si xf es menor que xi.
La velocidad promedio vx, de una partícula se define como el desplazamiento x de la partícula dividido entre el intervalo de tiempo t durante el que ocurre dicho desplazamiento:

Dónde el subíndice x indica movimiento a lo largo del eje x.
A partir de esta definición es claro que la velocidad promedio tiene dimensiones de longitud divididas entre el tiempo (L/T), o metros por segundo en unidades del SI.
Es muy importante reconocer la diferencia entre desplazamiento y distancia recorrida.
- Distancia es la longitud de una trayectoria seguida por una partícula.
- El desplazamiento de una partícula se define como su cambio en posición en algún intervalo de tiempo.
La distancia siempre se representa como un número positivo, mientras que el desplazamiento puede ser positivo o negativo.
El desplazamiento es un ejemplo de una cantidad vectorial.
ACTIVIDAD
En tu libreta contesta la siguiente pregunta, argumenta tu respuesta.
¿La velocidad promedio de una partícula que se mueve en una dimensión es positiva o negativa?

